The Generalized Pythagorean Identity for Inner Product Spaces

Let $H$ be an inner product space. If $x_1 ,x_2,\ldots , x_n \in H$ are pairwise orthogonal then

$$ ||\sum_{k=1}^{n} x_k||^2=\sum_{k=1}^{n} ||x_k||^2 $$

If $\{x_1 ,x_2,\ldots , x_n\}$ is a orthonormal subset and $c_k\in \mathbb{R}$ then it can be restated as

$$ ||\sum_{k=1}^{n} c_k x_k||^2=\sum_{k=1}^{n} |c_k|^2 $$

If the orthonormal set is infinite we only have Bessel's inequality.

________________________________________

________________________________________

________________________________________

Author of the notes: Antonio J. Pan-Collantes

antonio.pan@uca.es


INDEX: